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Abstract
Cooperstock and Tieu proposed a model of galaxy, based on ordinary GR, in
which no exotic dark matter is needed to explain the flat rotation curves in
galaxies. I will present the arguments against this model. In particular, I will
show that in their model the gravitational field is generated not only by the
ordinary matter distribution, but by a infinitely thin, massive and rotating disc
as well. This is a serious and incurable flaw and makes the Cooperstock–Tieu
metric unphysical as a galaxy model.

PACS numbers: 95.35.−d, 04.20.−q

1. Introduction

The dark matter problem is one of the most important issues in astrophysics. It has been
observed in various scales and objects since 1960s and has motivated a lot of research in various
directions. On the galactic scale the dark matter problem amounts to the discrepancy between
the observed velocity curves on one hand and the visible matter distribution on the other. It
seems difficult to reconcile both without adding a large, massive dark component, possibly
made of exotic matter, in the form of a halo. Other attempts involve various modifications of
laws of gravity at galactic scales.

The most conservative approach to the problem so far has been suggested in [1, 12, 13].
The authors propose to explain the discrepancy by general relativistic corrections to the motion
of stars in galaxies, without exotic dark matter and with standard GR as the gravity theory.

The paper is organized as follows: in the following section I will briefly present the
Cooperstock–Tieu model of galaxy. Then I will point out the main problems of this model
and prove that it harbours an additional layer of mass in the midplane. Finally I will discuss
other criticisms of the Cooperstock and Tieu’s paper model and their replies.
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2. The Cooperstock–Tieu model

Cooperstock and Tieu [1] consider a gravitating, pressureless cloud of gas of density ρ and
4-velocity uµ. They assume the spacetime to be axisymmetric, stationary and asymptotically
flat. The Einstein equations in this case read

Gµν[gαβ] = 8πG

c2
ρuµuν. (1)

Following van Stockum and Bonnor [3, 4], Cooperstock and Tieu assume that the dust flow
follows a geodesic field which is simultaneously a Killing vector. Consequently, the metric
element in appropriately adapted coordinates reads

ds2 = −eν(u dz2 + dr2) − r2 dϕ2 + (c dt − Ndϕ)2. (2)

The authors perform now a formal perturbative expansion of (1) in G1/2 and obtain the
following set of equations:

u = 1 (3)

Nrr + Nzz − Nr

r
= 0 (4)

N2
z + N2

r

r2
= 8πGρ

c2
. (5)

Finally they propose a solution to (3)–(5) in the form of a sum

N(r, z) = r
∂

∂r

∑
n

Cn e−kn|z|J0(knr) (6)

with arbitrary Cn’s. The rotation curves v(r, z) can easily be read out from the function N,

v(r, z) = Nc

r
(7)

and so can be the mass distribution via (5). For any sum of finite number of terms the mass
density falls off exponentially with z and r, so the galaxy is localized and has a finite total
mass.

The model is very simplified, as the rotation is rigid, contrary to what we observe in nature.
It nevertheless has an interesting feature: if rotation curves of ordinary galaxies are fitted to
(6), it turns out that the total mass of the galaxy needed is reduced an order of magnitude
compared to Newtonian calculations [1].

Obviously there are also several problems with this model. Firstly, its dynamics is
very different from Newtonian, while the motion and conditions in galaxies seem to be non-
relativistic. In fact the model does not seem to have a Newtonian limit even when GM → 0:
every particle of the dust evolves around the z-axis along a circular orbit. This is simply not
possible in the Newtonian theory unless we are dealing with an infinitely long, rotating column
of gas or with a perfectly flat disc.

Secondly, solution (6) contains a non-differentiable function. While such solutions are
not mathematically excluded, one has to treat them with care. They may arise if we choose a
coordinate system with a singularity or if the source functions are distributional. We will see
that in the Cooperstock–Tieu model the latter is true.
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3. Perturbation expansion revisited

Expanding in terms of a dimensional parameter is only a formal mathematical procedure which
may or may not yield a good approximate solution. One gains much more physical insight
from an expansion in terms of a dimensionless parameter. In the problem of the galactic
motion we can do in the following way [2, 6].

First, we introduce rescaled coordinates x̃µ = L−1xµ, dimensionless mass density
ρ̃ = L3M−1ρ and dimensionless velocity ũµ = c−1uµ (L is the characteristic length of
the galaxy, M its total mass and c the light speed). The Einstein equations become now

Gµν[g̃αβ] = λρ̃ũµũν (8)

with dimensionless λ = 8πGML−1c−2. In the Galaxy this quantity is of the order of 10−6

which makes the perturbative expansion around the flat metric a viable method.
We now take g = η + λ1/2g(1) + λg(2) + · · · and u = u(0) + λ1/2u(1) + · · · and apply the

harmonic (De Donder) gauge to fix the coordinate system. When applied to (8), it yields at
the two lowest orders


g(1)
µν = 0 (9)


g(2)
µν = F(g(1), u(0)). (10)

The first equation is the ordinary, flat Laplace equation and does not have any asymptotically
flat (localized) non-zero solutions. This sharply contradicts the results of Cooperstock and
Tieu who claimed to have presented a non-trivial solution which is asymptotically flat. The
reason of the contradiction turns out to be that (6) does not really solve (3)–(5) in the sense
that it has a delta function rather than 0 on the right hand side of (4). This can be interpreted
as an additional source of gravitational field in the form of a disc.

4. Singular disc of matter in the Cooperstock–Tieu model

I will now prove the existence of the singular disc in (2). Recall that if K is a Killing vector, τ

is its dual 1-form, the following identity holds,

d � dτ = 1
3Rµαταεµνρσ dxν ∧ dxρ ∧ dxσ , (11)

which integrated over an arbitrary three-dimensional domain V yields∫
∂V

� dτ =
∫

V

d � dτ = 4πG

3

∫
V

(2T αµτα − T τµ)εµνρσ dxν ∧ dxρ ∧ dxσ . (12)

The integral over the boundary of V is called the Komar integral and is an analogue of the
Gauss law in electromagnetism: a surface integral is equal to a volume integral of some part
of the stress–energy tensor, which is the source of the gravitational field.

In the Cooperstock–Tieu spacetime take V to be a cylinder given by 0 < r < R,−a <

z < a and K to be the timelike Killing vector ∂
∂t

. The Komar integral has now the interpretation
of mass generating the gravitational field.

Keep the radius R constant while shrinking the cylinder’s height to zero (a → 0). If T
consisted solely of dust, with no singular component, the limit of the right-hand side of the
Komar integral would be zero, as the volume shrinks to 0. However it is not the case in CT
metric:∫

∂V

� dK = 4π

∫ R

0
dr

N

r

∂N

∂z

∣∣∣∣
z=a

→ −4π

∫ R

0
dr r

(∑
n

CnknJ
′
0(knr)

)(∑
m

Cmk2
mJ ′

0(kmr)

)
�= 0. (13)
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The same argument goes for the axial Killing vector ∂
∂ϕ

[2]. The reason can be traced
back to the presence of |z| function in (6).

This proves the existence of an additional gravitating component (disc) at z = 0 which
has both mass and angular momentum. If we evaluate all components of the singular part of
Tµν , it turns out that the ‘matter’ of the disc is quite exotic [5].

This problem cannot be cured by smoothing out |z| in (6), because any smoothened
function would necessarily violate equation (9). This perturbative argument has actually been
strengthened by a fully non-perturbative one: it was proved analytically that all van Stockum
metrics are either non-asymptotically flat, or possess singularities of negative mass [8].

5. A review of other criticisms of the Cooperstock–Tieu model

The model presented in [1] was criticized on various grounds by several other authors.
Cooperstock and Tieu posted later two papers addressing the issues raised by the author
of this paper and others [12, 13]. In this section 1, will present a summary of arguments and
results of the opponents as well as the replies of Cooperstock and Tieu. I will also include a
brief commentary.

Garfinkle [10] argues that the post-Newtonian approximation should work very well in
the context of galactic dynamics. Therefore if the dark matter problem arises in the Newtonian
theory, so it does in GR. A galaxy model which differs significantly from the Newtonian would
have to involve a geon, i.e. quasi-stationary vacuum configuration of strong gravitational field.
However, in view of the theorem of Klainerman and Christodoulou [11], it is very unlikely
that such models exist: a weak-field configuration would disperse quickly, while in a strong
one the motion of the stars would not be slow comparing to c, as we observe in Nature.

Cooperstock and Tieu reply that they do not impose the harmonic gauge condition in their
paper, as was done in this paper or [10]. But this is obviously irrelevant in a general covariant
theory like GR. A result established in the harmonic coordinates system must be valid in any
other.

A similar line of reasoning is followed by Cross in [6], where he notes that the rotation
of the dust assumed by Coopertock and Tieu is necessarily rigid (covariant shear vanishes
while the rotation does not). He performs carefully the expansion of the Einstein equations in
the terms of

√
λ finding out that the coupling between the angular momentum and the metric

is too weak to affect the rotation curves in a significant way and produce large deviations from
the Newtonian approximation.

With respect to the problem of z = 0 singularity, Cooperstock and Tieu claim it is merely
a mathematical issue. While admitting that there is a singularity in their metric, they exclude
the z = 0 plane from the domain of integration of the Komar integral (13), and therefore from
the spacetime. They claim the physical matter density is given by the limit of the continuous
distribution as z → 0.

However, this kind of excision is simply wrong. The Komar integral plays the role of the
Gauss law in general relativity, i.e. it relates certain surface integrals with the volume integral
of some of the components of the gravitational field source. What makes it particularly useful
in this situation is the fact that it can easily capture any distributional or singular sources of
gravitational field, which one might omit when paying attention only to the continuous part of
the matter distribution (i.e. the dust).

Consider a simple example in electrostatics: imagine an electrically charged plane
embedded in a continuous distribution of charge. If one simply excluded the plane from
the domain of integration of the Gauss law, by excising a volume involving the plane and
shrinking it to zero, like in [13], the resulting total charge would omit the charge of the plane.
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It is then incorrect to define the charge density at the plane as the limit of the continuous
charge density, because the charge density is a distribution rather than a continuous function.
Therefore it is the appropriate integral law which enables us to calculate its true value at z = 0
rather than the limit z → 0.

Cooperstock and Tieu note further that a layer of negative mass would repulse any positive
mass nearby and therefore alter the geodesic motion in the spacetime. This remark is of course
correct—and in fact the layer of negative mass is needed exactly for that.

As was already pointed out, in the Newtonian gravity it is simply impossible to create
a stable configuration of ordinary matter rotating around the z-axis and of finite thickness.
Any particle off the z = 0 plane would suffer attraction towards that plane, simply due to
the imbalance of total masses above and below. Therefore it could not follow an azymuthal
circular trajectory all the time, which requires the z component of acceleration to vanish.
To escape that argument one has to either consider an infinitely thin disc, an infinitely thick
column or add something repulsing to the middle. Theorems of [8, 9] suggest that the situation
in GR is quite similar: when considering pressureless, rigidly rotating dust, one must either
give up asymptotic flatness, or add a repulsing singularity to the metric. It is exactly their
repulsion which makes the whole system stable.

Rigorous, analytical results concerning the van Stockum class of metrics have been
established in [8] and [9]. In [8] it is proven that the metrics are either non-asymptotically flat,
or contain singularities of negative mass. This is in good agreement with the hand-waving
argument of the previous paragraph. The reply of Cooperstock and Tieu in [13] is obviously
incorrect: they maintain that the analytical results do not hold for their approximate solution.
But if the approximate metric is supposed to model a physical galaxy in accordance with
GR, it must be understood as an approximation of the correct one and every negative result
concerning the correct metric should automatically invalidate the whole model.

The results of [9] are even stronger: global solutions with circularly rotating dust cannot
be extended beyond some distance Rmax from the z-axis. One might try to match them with
asymptotically flat vacuum solutions, but this turns out to be impossible without singularities.
Once again, the arguments are based on the analysis of the full non-linear equations.

In [14] the authors propose a different model of a galaxy as a stationary configuration of
the van Stockum type. Their solution suffers from exactly the same problems as the original
Cooperstock–Tieu problems. Namely, it harbours a singularity, though this time located along
the z-axis. A singularity of this type (or a singular layer of matter) seems to be even more
exotic than the dark matter halo.

Finally, I should mention one paper [7] which deals with the original Cooperstock–Tieu
model from the observational point of view. The authors point out that the resulting local
matter density, the vertical density profile and local integrated surface density near the Sun are
inconsistent with observations.

Summarizing, the Cooperstock–Tieu metric or its modifications like [14] are not good
galaxy models and do not solve the dark matter problem in astronomy and astrophysics.
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